

 API SPECIFICATIONS

VERSION 1.8.5

UPDATED 05.15.2023

2

INDEX

CONTENTSCONTENTSCONTENTSCONTENTS

SUMMARY ... 5

STANDARD USER FLOW .. 5

DIFFERENCES BETWEEN SANDBOX AND PRODUCTION .. 5

DISCUSSION: EXPIRATION DATES ... 5

DISCUSSION: CREATEORDERNOW vs CREATECODES ... 6

EXAMPLE: CREATING YOUR FIRST ORDER .. 7

EXAMPLE: CREATING YOUR FIRST ORDER AND SENDING YOUR FIRST EMAIL 8

AUTHENTICATE .. 10

Request .. 10

Response ... 11

1. GET USER ... 13

Request .. 13

Response ... 13

Response example: .. 14

2. GET BRANDS .. 15

Request .. 15

Response ... 15

Response example: .. 16

3. GET FUNDS ... 18

Request .. 18

Response ... 18

Response example: .. 19

4. GET CURRENT BALANCE .. 20

Request .. 20

Response ... 20

Response example: .. 21

5. GET PROJECTS .. 22

Request .. 22

Response ... 22

3

Response example: .. 23

6. CREATE CAMPAIGN ... 24

Request .. 24

Response ... 25

Response example: .. 26

7. CREATE CODES ... 27

Request .. 27

Response ... 29

Response example: .. 32

8. GET CAMPAIGNS .. 33

Request .. 33

Response ... 33

Response example: .. 33

9. ACTIVATE CAMPAIGN .. 35

Request .. 35

Response ... 35

Response example: .. 36

10. ORDER NOW ... 37

Request .. 37

Response ... 37

Response example: .. 38

11. CREATE ORDER NOW ... 39

Request .. 39

Response ... 41

Response example: .. 44

12. ORDER NOW ADD EMAILS .. 45

Request .. 45

Response ... 46

Response example: .. 47

13. ORDER NOW SEND EMAILS .. 47

Request .. 47

Response ... 49

Response example: .. 49

4

14. ORDER NOW LOAD PHYSICAL CARDS .. 49

Request .. 49

Response ... 51

Response example: .. 52

15. ORDER NOW REDEEM PHYSICAL CARDS ... 52

Request .. 52

Response ... 53

Response example: .. 53

Dynamic Fields ... 54

Client_ID Discussion .. 55

Cross Environment Testing .. 55

Conventions ... 56

Status Codes .. 56

5

SUMMARY

STANDARD USER FLOW
The Production Environment base URL is: https://redeem.yourdigitalreward.com

The standard user flow for using the Production Environment is to first Authenticate using the

Authentication endpoint. After which to create a new campaign using the Create Campaign

endpoint. After a new Campaign has been created, the user should activate the campaign using

the Activate Campaign endpoint before being able to crate codes using the Create Codes

endpoint. After a campaign has been created and activated additional codes can be added at a

later time using the Create Codes endpoint.

Before starting with the Production Environment, we highly recommend using our Sandbox

Environment which mimics the functionality of the Production Environment and allows for easy

and safe testing of endpoints and user flow. Please ask about access to our Sandbox

Environment.

DIFFERENCES BETWEEN SANDBOX AND

PRODUCTION
There are some differences between the Production Environment and the Sandbox

Environment. The two major differences between the Sandbox Environment and the Production

Environment are as follows.

Firstly, when calling Sandbox Environment methods there is a /sandbox/ prefix attached to the

method declarations. For example, the Sandbox Environment brands method is called via

api/sandbox/brands while the Production Environment brands method is called via

api/brands.

Secondly, the code redemption in the Sandbox Environment is simulated. So when attempting

to redeem codes via https://redeem.yourdigitalreward.com/sandbox/activate-code/{code} user

will receive a message that the code has been redeemed but that is the extent of the code

redemption in the Sandbox Environment.

DISCUSSION: EXPIRATION DATES
The NeoCurrency System Campaigns have an end date associated with each campaign

created in the NeoCurrency System. The end date of a campaign is the date after which all

codes generated for this campaign become expired or invalid. This is done so that the system is

6

more flexible in handling both limited duration and unlimited duration campaigns. In the case of

a client wanting to run a campaign only for a limited amount of time, we suggest entering a

campaign end date when the client wants the system generated codes to expire. If on the other

hand the client would like to have an unlimited length campaign, we recommend setting a

campaign end date five or ten years in the future. As a recap, NeoCurrency system generated

codes are only valid while the campaign which has generated those codes has not passed its

end date.

DISCUSSION: CREATEORDERNOW vs

CREATECODES
In the NeoCurrency System, there is a distinction between Order Now orders and creating

additional codes for an already existing campaign. The main distinction is the Order Now orders

allow the user to upload and send emails for the codes created with Order Now orders while this

is not allowed for create/codes standard campaigns. If user wishes to use the email

functionality, user should use the createordernow order endpoint and flow. Below is a flow

diagram comparing the ordering process between using Order Now and using the standard

code creation.

7

EXAMPLE: CREATING YOUR FIRST ORDER
In this example, we will go over the needed endpoints to create your first order.

The overall flow is as follows:

POST /api/sandbox/createordernow

Below is an example of the requests and responses from this transaction flow:

POST /api/sandbox/createordernow

Request:

{

"custom1":"this is my first order", � This is a custom field that can be used for things like

custom data which will not be shown to the end customer.

 "brands" : [{

 "id" : 623, � This is the brand you are looking to order

 "denomination" : 0.05,

 "quantity" : 1

 }]

}

Response:

{

 "success": {

 "order_id": 6208,

 "custom1":”this is my first order”,

 "data": [

 {

 "campaign_brand_id": 10031,

 "denomination": "0.05",

 "currency": "USD",

 "codes": [

 "c613e814692e94906be3d8f592551894e5bd1f85"

],

 "uuids": {

 "c613e814692e94906be3d8f592551894e5bd1f85": "3520f5a13757d26d717ac35c5c1f0

d7f202103111028291"

 }

 }

]

 }

}

8

EXAMPLE: CREATING YOUR FIRST ORDER AND

SENDING YOUR FIRST EMAIL
In this example, we will go over the needed endpoints to create your first order and send your

first email.

The overall flow is as follows:

POST /api/sandbox/createordernow

POST /api/sandbox/addemails

POST /api/sandbox/sendemails

Below is an example of the requests and responses from this transaction flow:

POST /api/sandbox/createordernow

Request:

{

"custom1":"this is my first order", � This is a custom field that can be used for things like

custom data which will not be shown to the end customer.

 "brands" : [{

 "id" : 623, � This is the brand you are looking to order

 "denomination" : 0.05,

 "quantity" : 1

 }]

}

Response:

{

 "success": {

 "order_id": 6208, � This will be needed when adding and sending emails

 "custom1":”this is my first order”,

 "data": [

 {

 "campaign_brand_id": 10031, � This will be needed when adding and sending

emails

 "denomination": "0.05",

 "currency": "USD",

 "codes": [

 "c613e814692e94906be3d8f592551894e5bd1f85"

],

 "uuids": {

9

 "c613e814692e94906be3d8f592551894e5bd1f85": "3520f5a13757d26d717ac35c5c1f0

d7f202103111028291"

 }

 }

]

 }

}

POST /api/sandbox/addemails

Request:

{

"order_id": 6208,

"campaign_brand_id":10031,

"emails": [

{

"email": "johndoe@test.com",

"first_name": "John",

"last_name": "Doe",

"subject": " This is a test"

}

]

}

Response:

{

 "success": "You have successfully added one email!"

}

POST api/sandbox/sendemails

Request:

{

 "order_id": 6208,

 "campaign_brand_id": 10031

}

Response:

{

 "send": 1

}

10

HEADERS
In order to work properly, the NeoCurrency REST API needs the header “Content-Type” with

the value “application/json” to be included in each request.

AUTHENTICATION

AUTHENTICATE
The NeoCurrency REST API uses oAuth2 authentication with Password Grant. In order to

successfully authenticate and send requests to the REST API, the user sets the request

Authorization header to Bearer and transmits the access_token received as part of a successful

authentication response.

Request

Method URL

POST api/get-token

Headers Value

Content-Type application/json

Type Params Values

POST

POST

POST

POST

client_id

client_secret

email

password

string

string

string

string

11

client_id

 Client ID provided by the NeoCurrency REST API

client_secret

Companion to the client_id that is provided by the NeoCurrency REST API

email

The email of the user that wishes to authenticate with the API.

password

The password of the user that wishes to authenticate with the API

Request example:
{

 "client_id":"JOI8EX4J3K8706L3HQ0KIL3H",

 "client_secret":"Q0JBQEHWT1J899BG3UM83GNMWG53OW4OQB5GMCNYH7DYDN",

 "email" : "api@test.com",

 "password": "123456"

}

Response

Status Response

200 The rest API will respond with a JSON object containing the following

properties:

- access_token: The access token. This expires in 1 day

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: “500 Internal Server Error.”

12

Response example:

{

 "access_token": "alphanumeric code here"

}

13

METHODS

1. GET USER
Get information for the authenticated user

Request

Method URL

GET api/user

Type Params Values

Headers Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with a JSON object containing the following

properties:

- id: Integer

- name: String

- email: String

- role_id: Integer

- created_at: Datetime

- updated_at: Datetime

14

- active: Integer 1-Active, 0-Not Active

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{

 "id": 3,

 "name": "Api test",

 "email": "api@neocurrency.com",

 "role_id": "5",

 "created_at": "2017-08-13 19:46:45",

 "updated_at": "2017-12-07 13:46:24",

 "active": "1"

}

15

2. GET BRANDS

Getting all the brands that the authenticated user has access to.

Request

Method URL

GET api/brands

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with an array of JSON objects, each of them

containing the following properties:

- id: Integer

- name: String

- active: Integer 1-Active, 0-Not Active

- created_at: Datetime

- updated_at: Datetime

- user_id: Integer - ID of authenticated user

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

16

- error: ”500 Internal Server Error.”

Response example:

[

 {

 "id": 69,

 "name": "Burger King $5-$1000",

 "real_name": "Burger King",

 "value": 0,

 "min": 5,

 "max": 1000,

 "description": "Every day, more than 11 million guests visit BURGER KING® restaurants

around the world. And they do so because our restaurants are known for serving high-quality,

great-tasting, and affordable food. Founded in 1954, BURGER KING® is the second largest fast

food hamburger chain in the world. The original HOME OF THE WHOPPER®, our commitment

to premium ingredients, signature recipes, and family-friendly dining experiences is what has

defined our brand for more than 50 successful years.",

 "terms": "Not redeemable for cash.",

 "logo":

"https://redeem.yourdigitalreward.com/brands/7YAcQCnG0LplDB.2CfY_ZFN5KATIdfnA6YD9.p

ng",

 "card_img":
"https://redeem.yourdigitalreward.com/brands/7YAcQCnG0LplDB.2CfY_ZFN5KATIdfnA6YD9.p
ng",
 "country_code": "US",

 "currency_name": "USD"

 },

 {

 "id": 119,
 "name": "Gilt $25",
 "real_name": "Gilt",
 "value": 25,
 "min": 0,
 "max": 0,

17

 "description": "Gilt.com E-Gift Cards provide instant insider access to top designer brands
and experiences. New flash sales start daily for women, men, home and children. Plus, get
access to luxury lifestyle experiences locally with Gilt City.",
 "terms": "Read our E-Gift Card terms of use at
http://www.gilt.com/company/giftCardTermsOfUse",
 "logo": "https://api.giftango.com/imageservice/Images/300x190/162528_vgc.png",
 "card_img": "https://api.giftango.com/imageservice/Images/300x190/162528_vgc.png",
 "country_code": "US",
 "currency_name": "USD"

 }

]

18

3. GET FUNDS

Getting all the funds that the authenticated user has access to.

Request

Method URL

GET api/funds

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with an array of JSON objects

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

19

Response example:

[
 {
 "id": 1,
 "client_id": 3,
 "currency_id": "USD",
 "value": 1000
 },
 {
 "id": 9,
 "client_id": 3,
 "currency_id": "EUR",
 "value": 500
 }
]

20

4. GET CURRENT BALANCE

Getting the total of the current funds and any balance distributed over any Projects the user has

access to. This endpoint shows the current total balance that the client has access to, to create

and redeem codes with. This endpoint will provided more up to date information than the /funds

endpoint which only shows the current fund balance for the user.

Request

Method URL

GET api/currentbalances

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with an array of JSON objects

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

21

Response example:

[
 {
 "id": 1,
 "client_id": 3,
 "currency_id": "USD",
 "value": 1469
 },
 {
 "id": 5,
 "client_id": 3,
 "currency_id": "EUR",
 "value": 100
 }
]

22

5. GET PROJECTS

Getting all the projects that the authenticated user has access to.

Request

Method URL

GET api/projects

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with an array of JSON objects

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

23

Response example:

[
 {
 "id": 1,
 "p_group_id": 3,
 "p_name": "Summer Campaigns",
 "p_description": "Summer Campaigns Project",
 "p_active": 1,
 "created_at": "2017-09-20 14:52:15",
 "updated_at": "2017-09-30 12:14:15"
 },
 {
 "id": 2,
 "p_group_id": 3,
 "p_name": "Winter Campaigns",
 "p_description": "Winter Campaign Project",
 "p_active": 1,
 "created_at": "2017-09-20 20:12:23",
 "updated_at": "2017-12-07 10:02:37"
 }
]

24

6. CREATE CAMPAIGN
Method called when creating a campaign. Once this method is successfully executed a

campaign with pending status will be created for the user.

Request

Method URL

POST api/campaigns/create

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST

POST

POST

POST

POST

POST

name

start_date

end_date

timezone

project_id

fund_id

string

Date: datetime format(MM/DD/YYYY

HH:ii)

Date: datetime format (MM/DD/YYYY

HH:ii)

string

integer

integer

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

name

The name of the campaign, there are no restrictions on name and multiple campaigns can have

the same name

start_date

The date, down to the hour and minute combination of when the campaign will start

end_date

 The date, down to the hour and minute combination of when the campaign will end.

25

timezone

The timezone for the start and end date of the campaign. We use PHP timezones

(http://php.net/manual/en/timezones.php) as these automatically take into account daylight

savings time. The possible values for timezone are: “Eastern Standard Time”, “Central Standard

Time”, “Mountain Standard Time”, “Pacific Standard Time”, “Hawaii”.

project_id

The ID of the Project attached to this Campaign. See get all projects by user.

fund_id

The ID of the Fund attached to this Campaign. See get all funds by user.

Request example:
{

 "name":"api campaign 1",

 "start_date": "12/27/2017 13:00",

 "end_date": "12/31/2017 13:00",

 "timezone": "Eastern Standard Time",

 "project_id": 1,

 "fund_id": 1

}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

422 The rest API will respond with an array of JSON objects, each of them,

containing the following properties:

- name_of_the_problem_field: array of validation error messages

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

26

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{

 "success": [

 {

 "create_campaign": "You have successfully created a campaign width ID: 45!"

 }

]

}

{

 "errors": [

 {

 "timezone": "Time Zone is not correct!"

 },

 {

 "start_date": "A start date must be before end date!"

 }

]

}

27

7. CREATE CODES

This method is used to get the generated codes for the campaign with the specified campaign

ID. The endpoint returns both the codes in the codes array as well as UUID pair which can be

used to distinguish individual codes on client end. The UUID has no monetary value and can be

used to refer to the reward code without having to show it directly.

Request

Method URL

POST api/codes/create

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST

POST

campaign_id

brands

id

denomination

quantity

secret (optional)

secret_activation_time

(optional)

client_id (optional)

expiration_days

(optional)

integer

array

integer

float

integer

boolean (true/false)

double

integer

double

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

campaign_id

The ID of the campaign for which these codes are being generated for.

28

brands

The array of brands used in the campaign for which codes need to be generated. For each

brand an id for the brand, a denomination and quantity are required.

secret (optional)

Secret is a true or false value which determines if the code generated will have an additional 2

factor authentication code when redeemed. This is an optional parameter.

secret_activation_time (optional)

If the brand has secret set to true, then the secret_activation_time is the time (in hours) of when

the redeemed code will be activated after the end user has requested a redemption of the code.

An example where a code is created today with a secret code and a secret_activation_time of

24 (hours) means the following. If the code is created today and accessed by the end client

tomorrow, the 24 hours will begin counting down from tomorrow (the time end user activated the

reward). After the 24 hours wait time, the end client will be able to claim their reward. The

minimum time is 0.25 of an hour or 15 minutes while there is no maximum.

expiration_days (optional)

This optional parameter controls how many days after redemption a code for a given brand will

expire. For example if a brand is ordered with an expiration days value of 1, then the code will

expire 1 day after being redeemed. Expiration in this context means that the end client will have

a limited amount of time after redeeming the code to use said code.

client_id

This optional parameter is something which is required to place orders for some brands. The

value here will be provided at Account Setup. In most cases the value will start from “1” and

increase as more client_id’s are added for a specific brand.

Request example:
{

"campaign_id":9,

"brands":[

{

"id" : 999,

"denomination": 1.01,

"quantity": 2

"secret" : true,
 "secret_activation_time": 0.25,
 "client_id": 29,
 “expiration_days”: 30

29

}

]

}

Response

Status Response Explanation

407 Unauthorized access1 Attempted to connect to live API

with sandbox creds or sandbox

API with live creds

422 The Campaign ID is required! Request did not have a valid

campaign_id passed

422 The brands or groups is required and must be
array!

Request did not contain an array

object of brands (or groups) or it

was an empty array

422 Expiration days is not correct! Request contained

expiration_days and it was either

not an interger or was null or was

less then 1

422 A brand_id: xxx is not correct! Request contained a brand_id

which the requestor does not

have access to, or is no longer

available, or is temporarily

unavailable

422 A brand_id: xxx with quantity: yyy is not
correct!

Request contained a quantity

which was not a number or was

less than or equal to 0

422 A brand_id: xxx with denomination yyy is not
correct!

Request contained a

denomination less than or equal

to 0 or a non-numeric

denomination

422 A brand_id: xxx with secret: zzz is not
correct!

Request contained secret but it

was not Boolean value (did not

pass true/false)

30

422 A brand_id xxx with secret activation time
yyy is not correct!

Request contained

activation_time but it was less

than or equal to 0 or it was non-

numeric

422 A brand_id: xxx with secret activation time:
yyy is below the minimum of 15 minutes,
which corresponds to (0.25)!

Request had activation_time and

it was numeric but was under the

minimum allowed of 0.25

422 A brand_id: xxx with secret activation time:
yyy must have secret!

Request had activation_time but

did not specify secret: true. To

you the functionality for activation

time secret must be true

422 A brand_id xxx is not correct! Request contained a brand_id

but the brand was not found. This

error can also be thrown if a

campaign is not found or if a fund

is not found for the specified

campaign or if attempting to use

a brand with one currency in a

campaign with a different

currency

422 The Campaign is not active! The campaign is not active. A

campaign must be active before

codes can be crated for it. A

campaign can be activated either

by the interface or the

campaign/activate endpoint. By

default order-now campaigns

(which is what /crateordernow

uses are active)

422 A brand_id: xxx with quantity: yyy is not
correct! Available: ccc

Some brands (very few) are

stocked brands where if the

request attempts to exceed the

number of stocked rewards you

will receive this error. For

example, if the system only had 2

Amazon gift cards for a specific

denomination but the request

31

asked for 5, then the user will

receive this error

422 A brand_id: xxx requires additional parameter
client_id!

For this request to succeed the

brand requires the additional

parameter client_id. In cases

where the brand does NOT

require a client_id then this will

be ignored

422 A brand_id: xxx with parameter client_id vvv
is not correct!

The client_id parameters are

provided, usually per campaign

and can be located in the

dashboard interface. If a client_id

which does not exist is is not

attributed to the user making the

request is found, then the user

will receive this error.

422 A campaign_id is not correct! This error occurs when a project

is not found for this

campaign/request

422 A brand_id: xxx with denomination: yyy is
not correct!

This error occurs when the

denomination sent by the request

is outside the bounds of the

brand. For example is brand xxx

has denomination range $1 to

$100 and the request attempts to

make a $200 order, the user will

see this error

403 You do not have enough money on this
program

There was not enough in the fund

to cover the codes which are to

be generated

403 You have entered an invalid quantity!
Available : xxx

This can happen for stocked

brands where at the time of

creating rewards there are not

enough available to fulfill the

ordered quantity

406 There was an error processing your request,
please contact customer support

There was an unexpected error

when attempting to process your

request. No order is placed.

32

500 Service Unavailable The request timed out because of

server issues. No order was

placed

Response example:

{

"success": [

 {

 "denomination": "0.11",

 "currency": "USD",

 "codes": [

 "80cbdeae755c97e61e47918addb1a268f36aca6d",

 "df7a458d8314f8bcac2803d47647bcd711e8a43d"

],

 "uuids": {

 "80cbdeae755c97e61e47918addb1a268f36aca6d": "462e14a70135493e89b3

9fa6cd1364c3202102051036531",

 "df7a458d8314f8bcac2803d47647bcd711e8a43d": "83cab43947d05f43267e3f

b47c337834202102051036532"

 },

 "codeSecretOffset": {

 "80cbdeae755c97e61e47918addb1a268f36aca6d": 0.25,

 "80cbdeae755c97e61e47918addb1a268f36aca6d": 0.25

 },

 "codeSecret": {

 "80cbdeae755c97e61e47918addb1a268f36aca6d ": "REXWJ6n0fJ",

 "df7a458d8314f8bcac2803d47647bcd711e8a43d”: "AER1JbO6f9"

 },

 "order_id": 6149

 }

]

}

33

8. GET CAMPAIGNS

Gets all the Campaigns that the authenticated user has access to.

Request

Method URL

GET api/campaigns

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with an array of JSON objects

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

[
 {

34

 "id": 34,
 "name": "api campaign 1",
 "description": null,
 "created_at": {
 "date": "2017-12-27 12:58:53.000000",
 "timezone_type": 3,
 "timezone": "UTC"
 },
 "status": "pending",
 "start_date": "2017-12-27 13:00:00",
 "end_date": "2017-12-31 13:00:00",
 "timezone": "Eastern Standard Time",
 "project_id": 1,
 "fund_id": 1
 },
 {
 "id": 35,
 "name": "api campaign 1",
 "description": null,
 "created_at": {
 "date": "2017-12-27 12:59:11.000000",
 "timezone_type": 3,
 "timezone": "UTC"
 },
 "status": "pending",
 "start_date": "2017-12-27 13:00:00",
 "end_date": "2017-12-11 13:00:00",
 "timezone": "Eastern Standard Time",
 "project_id": 1,
 "fund_id": 1
 }
]

35

9. ACTIVATE CAMPAIGN

Activate a campaign so that codes for this campaign can be generated.

Request

Method URL

POST api/campaign/active

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST campaign_id integer

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

campaign_id

campaign_id is the ID of the campaign that needs to be activated. A campaign needs to be

activated before any codes can be generated for this campaign.

Request example:
{
 "campaign_id":46
}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

36

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{
 "success": {
 "id": 46,
 "name": "SANDBOX api campaign 1",
 "description": null,
 "expiration_days": 331,
 "created_at": "2018-01-04 15:18:09",
 "updated_at": "2018-01-05 10:36:18",
 "status": "active",
 "start_date": "2018-01-04 13:00:00",
 "end_date": "2018-12-01 13:00:00",
 "timezone": "Eastern Standard Time",
 "project_id": 1,
 "fund_id": 1
 }
}

37

10. ORDER NOW

Lists all the orders from Order Now functionality. The Order Now type orders are those which

are eligible to be used with the email functionality available in the API. To create an Order Now

type order, use the /api/createordernow endpoint.

Request

Method URL

GET api/ordernow

Type Params Values

Header Authorization: Bearer access_token

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

38

Response example:

[
 {
 "id": 1,
 "total_cost": "$5.50",
 "payment_method": "Draw-Down Account",
 "purchase_order_number": "66",
 "brands": [
 {
 "brand_id": 2,
 "brand_name": "Amazon",
 "amount": "$1.00",
 "total_rewards": "2",
 "rewards_available_to_send": 2,
 "rewards_available_to_add_email": 2
 },
 {
 "brand_id": 23,
 "brand_name": "CVS",
 "amount": "$10.00",
 "total_rewards": "1",
 "rewards_available_to_send": 1,
 "rewards_available_to_add_email": 1
 }
]
 }
]

39

11. CREATE ORDER NOW

This method is used to create an order which can use the email functionality enabled in the API.

Request

Method URL

POST api/createordernow

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST purchase_order_number string

POST custom1 string

POST brands:

id:

denomination:

quantity:

secret (optional):

secret_activation_time

(optional):

expiration_days:

(optional)

Array

integer

double

integer

boolean (true/false)

double

double

POST client_id: integer (optional)

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

purchase_order_number

purchase_order_number is an optional integer value to pass when creating an order now

which can help the user track the different order now orders in the system.

custom1

custom1 is an optional string field where user can enter any data they wish to pass to the

40

NeoCurrency system about an order now order. This information can help the user track a

specific order now order in the system.

brands

The array of brands used in the campaign for which codes need to be generated. For each

brand an id for the brand, a denomination and quantity are required. The id is from the

/brands endpoint, the possible values for denomination and quantity are governed by the brand

id and what is available for this brand via /brands endpoint.

secret (optional)

Secret is a true or false value which determines if the code generated will have an additional 2

factor authentication code when redeemed. This is an optional parameter.

secret_activation_time (optional)

If the brand has secret set to true, then the secret_activation_time is the time (in hours) of when

the redeemed code will be activated after the end user has requested a redemption of the code.

An example where a code is created today with a secret code and a secret_activation_time of

24 (hours) means the following. If the code is created today and accessed by the end client

tomorrow, the 24 hours will begin counting down from tomorrow (the time end user activated the

reward). After the 24 hours wait time, the end client will be able to claim their reward. The

minimum time is 0.25 of an hour or 15 minutes while there is no maximum.

expiration_days (optional)

This optional parameter controls how many days after redemption a code for a given brand will

expire. For example if a brand is ordered with an expiration days value of 1, then the code will

expire 1 day after being redeemed. Expiration in this context means that the end client will have

a limited amount of time after redeeming the code to use said code.

client_id

This optional parameter is something which is required to place order now orders for some

brands. The value here will be provided at Account Setup. In most cases the value will start

from “1” and increase as more client_id’s are added for a specific brand.

Request example:
{
 "purchase_order_number": "66",
 "custom1": "something",
 "brands": [
 {
 "id": 2,
 "denomination": 1.00,
 "quantity": 2,

“expiration_days”: 20.5,
 },
 {

41

 "id": 23,
 "denomination": 10.00,
 "quantity": 1
 }
]
}

Request example 2:
{
 "brands" : [{
 "id" : 623,
 "denomination" : 0.05,
 "quantity" : 1,
 "secret" : true,
 "secret_activation_time": 0.5
 }]
}

Response

Status Response Explanation

401 Unauthorized access1 Attempted to connect to live API

with sandbox creds or sandbox

API with live creds

422 The Campaign ID is required! Request did not have a valid

campaign_id passed

422 The brands or groups is required and must be
array!

Request did not contain an array

object of brands (or groups) or it

was an empty array

422 Expiration days is not correct! Request contained

expiration_days and it was either

not an interger or was null or was

less then 1

422 A brand_id: xxx is not correct! Request contained a brand_id

which the requestor does not

have access to, or is no longer

available, or is temporarily

unavailable

42

422 A brand_id: xxx with quantity: yyy is not
correct!

Request contained a quantity

which was not a number or was

less than or equal to 0

422 A brand_id: xxx with denomination yyy is not
correct!

Request contained a

denomination less than or equal

to 0 or a non-numeric

denomination

422 A brand_id: xxx with secret: zzz is not
correct!

Request contained secret but it

was not Boolean value (did not

pass true/false)

422 A brand_id xxx with secret activation time
yyy is not correct!

Request contained

activation_time but it was less

than or equal to 0 or it was non-

numeric

422 A brand_id: xxx with secret activation time:
yyy is below the minimum of 15 minutes,
which corresponds to (0.25)!

Request had activation_time and

it was numeric but was under the

minimum allowed of 0.25

422 A brand_id: xxx with secret activation time:
yyy must have secret!

Request had activation_time but

did not specify secret: true. To

you the functionality for activation

time secret must be true

422 A brand_id xxx is not correct! Request contained a brand_id

but the brand was not found. This

error can also be thrown if a

campaign is not found or if a fund

is not found for the specified

campaign or if attempting to use

a brand with one currency in a

campaign with a different

currency

43

422 The Campaign is not active! The campaign is not active. A

campaign must be active before

codes can be crated for it. A

campaign can be activated either

by the interface or the

campaign/activate endpoint. By

default order-now campaigns

(which is what /crateordernow

uses are active)

422 A brand_id: xxx with quantity: yyy is not
correct! Available: ccc

Some brands (very few) are

stocked brands where if the

request attempts to exceed the

number of stocked rewards you

will receive this error. For

example, if the system only had 2

Amazon gift cards for a specific

denomination but the request

asked for 5, then the user will

receive this error

422 A brand_id: xxx requires additional parameter
client_id!

For this request to succeed the

brand requires the additional

parameter client_id. In cases

where the brand does NOT

require a client_id then this will

be ignored

422 A brand_id: xxx with parameter client_id vvv
is not correct!

The client_id parameters are

provided, usually per campaign

and can be located in the

dashboard interface. If a client_id

which does not exist is is not

attributed to the user making the

request is found, then the user

will receive this error.

422 A campaign_id is not correct! This error occurs when a project

is not found for this

campaign/request

422 A brand_id: xxx with denomination: yyy is
not correct!

This error occurs when the

denomination sent by the request

is outside the bounds of the

44

brand. For example is brand xxx

has denomination range $1 to

$100 and the request attempts to

make a $200 order, the user will

see this error

403 You do not have enough money on this
program

There was not enough in the fund

to cover the codes which are to

be generated

403 You have entered an invalid quantity!
Available : xxx

This can happen for stocked

brands where at the time of

creating rewards there are not

enough available to fulfill the

ordered quantity

401 There was an error processing your request,
please contact customer support

There was an unexpected error

when attempting to process your

request. No order is placed.

500 Service Unavailable The request timed out because of

server issues. No order was

placed

 Response example:

{
 "success": {
 "order_id": 6208,
 "custom1": null,
 "data": [
 {
 "campaign_brand_id": 10031,
 "denomination": "0.05",
 "currency": "USD",
 "codes": [
 "c613e814692e94906be3d8f592551894e5bd1f85"
],
 "uuids": {
 "c613e814692e94906be3d8f592551894e5bd1f85": "3520f5a13757d26d717ac35c5
c1f0d7f202103111028291"
 },
 "codeSecretOffset": {
 "c613e814692e94906be3d8f592551894e5bd1f85": 0.5
 },
 "codeSecret": {

45

 "c613e814692e94906be3d8f592551894e5bd1f85": "REXWJ6n0fJ"
 }
 }
]
 }
}

12. ORDER NOW ADD EMAILS

This method is used to create an order which can use the email functionality enabled in the API.

Request

Method URL

POST api/addemails

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST order_id integer

POST campaign_brand_id integer

POST emails array with first name, last name,

email, subject, custom message.

Subject and Custom Message are

optional

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

order_id

order_id is the ID of the Order Now order for which user wishes to send emails for. To get all

eligible Order Now order_ids use /api/ordernow. A single Order Now order maybe have multiple

brands attached, so emails are loaded and sent by brand.

46

campaign_brand_id

campaign_brand_id is the campaign brand ID received from the success message of the

createordernow endpoint. The campaign brand ID is an amalgamation which signifies a

particular brand and denomination pair. These integer values are unique and non-repeating.

emails

emails is an array which holds first name, last name, email, subject and custom message for

each code. The subject and custom message parameters are optional. If they are used, they will

overwrite the email subject and default message to user. For custom message, we only allow

text messages and do not, in this version, allow html or links in the message. For an example of

usage, please see the Request example below.

Request example:
{

 "order_id": 1,

 "campaign_brand_id": 2,

 "emails": [

 {

 "email": "john@test.com",

 "first_name": "John",

 "last_name": "Doe",

 "subject": "Congratulations Winner",

 "message":"This will be some string text message that will be displayed."

 }

]

}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

47

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{
 "success": "You have successfully added one email!"
}

13. ORDER NOW SEND EMAILS

This method is used to create an order which can use the email functionality enabled in the API.

Request

Method URL

POST api/sendemails

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST order_id integer

POST campaign_brand_id integer

POST language String (optional)

POST email_template_id integer

48

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

order_id

order_id is the ID of the Order Now order for which user wishes to send emails for. To get all

eligible Order Now order_ids use /api/ordernow. A single Order Now order maybe have multiple

brands attached, so emails are loaded and sent by brand.

campaign_brand_id

campaign_brand_id is the campaign brand ID received from the success message of the

createordernow endpoint. The campaign brand ID is an amalgamation which signifies a

particular brand and denomination pair. These integer values are unique and non-repeating.

language

The optional language parameter allows emails to be sent in different languages. Examples

include “en” for English and “fr” for French. Languages supported is based on Account Setup.

email_template_id

The optional email_template_id parameter allows emails to be sent using a pre-defined

template. This template is created and curated in the web portal portion of the NeoCurrency

system and can be called via id when sending emails via the API. This parameter will return a

422 type error if the user does not have access to call the specified email_template_id.

Request example:
{

 "order_id": 5041,

 "campaign_brand_id": 297

}

Request example 2:
{

"order_id": 5106,

"campaign_brand_id": 250,

"language": "fr"

}

Request example 3:
{

"order_id": 5106,

"campaign_brand_id": 250,

49

"email_template_id": 76

}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{
 "send": 2
}

14. ORDER NOW LOAD PHYSICAL CARDS

This method is used to create an order which can use the email functionality enabled in the API.

Request

Method URL

POST api/bulkuploadaddresses

50

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST order_id integer

POST campaign_brand_id integer

POST people

first_name

last_name

address_1

address_2

city

state

zip

carrier_line_1

carrier_line_2

fourth_line

Array

String

String

String

String

String

String

String

String

String

String

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

order_id

order_id is the ID of the Order Now order for which user wishes to send emails for. To get all
eligible Order Now order_ids use /api/ordernow. A single Order Now order maybe have multiple
brands attached, so emails are loaded and sent by brand.

campaign_brand_id

campaign_brand_id is the campaign brand ID received from the success message of the
createordernow endpoint. The campaign brand ID is an amalgamation which signifies a
particular brand and denomination pair. These integer values are unique and non-repeating.

people

people is the array of contact information which will be used to create and send the physical
cards. The information required includes contact first and last names and full address.
Carrier_line_1 and carrier_line_2 are two customizable fields which will display on the card
carrier letter. Fourth_line is a customizable message which displays on the card itself under the
customer’s name.

51

Request example:
{

 "orderId":"5963",
"campaign_brand_id":"9429",
"people": [
{

"first_name":"John",
"last_name": "Doe",
"address_1": "123 Street",
"address_2": "Apt 1a",
"city": "New York",
"state": "NY",
"zip": "00001",
"carrier_line_1":"message 1",
"carrier_line_2":"message 2",
"fourth_line":"text under name on card"

}
]
}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

52

Response example:

{
 "success"

}

15. ORDER NOW REDEEM PHYSICAL CARDS
This method is used to redeem and send the physical cards to the physical addresses loaded in
the system using /api/bulkuploadaddresses.

Request

Method URL

POST api/redeemphysicalcards

Type Params Values

Header Authorization: Bearer access_token

Type Params Values

POST order_id integer

POST campaign_brand_id integer

access_token

access_token must be sent with all client requests. The access_token helps the server to

validate the request source.

order_id

order_id is the ID of the Order Now order for which user wishes to send emails for. To get all
eligible Order Now order_ids use /api/ordernow. A single Order Now order maybe have multiple
brands attached, so emails are loaded and sent by brand. Do note that only orders which have
physical brands are eligible for this endpoint. If the order does not contain a physical brand and
error will be returned when hitting this endpoint.

53

campaign_brand_id

campaign_brand_id is the campaign brand ID received from the success message of the
createordernow endpoint. The campaign brand ID is an amalgamation which signifies a
particular brand and denomination pair. These integer values are unique and non-repeating.

Request example:
{

"order_id": 5041,
"campaign_brand_id": 297

}

Response

Status Response

200 The rest API will respond with a JSON objects containing the following

properties:

- success

308 The rest API will respond with such a code in the event of attempting to

connect to the rest API via http instead of https.

401 The rest API will respond with a JSON object containing the following

properties:

- error: “Unauthenticated.”

500 The rest API will respond with a JSON object containing the following

properties:

- error: ”500 Internal Server Error.”

Response example:

{
"success"

}

54

 CODE ACTIVATION

Codes from the sandbox NeoCurrency system can be activated much in the same way that the

live system can activate codes. The endpoint for code activation while not directly an API endpoint

is https://redeem.yourdigitalreward.com/sandbox/activate-code/{code} .

GLOSSARY

Dynamic Fields

This a notation which allows the user to pass specific dynamic reward data into the email

templates used for sending email rewards in the NeoCurrency system. These fields are denoted

by using hash signs (#) so for example #firstname# will dynamically pull in the first name of the

customer. This way it’s possibly to dynamically send out personalized email templates without

having to create multiple email templates for different customers/denominations etc. A list of

acceptable dynamic fields is below:

#firstname# - the first name of the customer if a name has been uploaded.

#fullname# - the full name of the customer, this is equivalent to #firstname# #lastname#.

#lastname# - the last name of the customer if a name has been uploaded.

#rewardbrand# - the name of the brand the customer is receiving.

#currency# - the currency symbol of the reward the customer is receiving (example $ or € or £).

#rewardvalue# - the denomination value of the reward customer is receiving.

An example of API usage using the /api/sendemails endpoint would be as follows

{

 "order_id": 1234,

 "campaign_brand_id": 111,

 "subject": "Thank you #firstname#, here is a #currency##rewardvalue# gift",

 "under_header": "#fullname# thank you for being awesome",

 "under_button": “Mr. #lastname#, please visit us again soon!",

 "language": "de"

}

55

Client_ID Discussion

When placing orders, some brands, require an additional parameter called client_id. This is
provided to the user ahead of time. The client_id does not change and is tied to the specific user
account. Furthermore, brands have affected brands have different client_id’s between sandbox
and live API environments. The client_id is used when making requests for rewards from
specific brands and should be passed to both create_codes or createordernow endpoints.
Failure to pass this parameter will result in an error stating that this parameter is required for the
specific brand. In most cases usually Visa and Mastercard reward cards are the brands which
will need this additional parameter. Below are all current brands which require client_id (note a
single account may not have access to all these brands. We will try to keep the list amassed
here up to date).

Brand
608 671 672 673 674

674 676 677 678 682

695 804 857 860 861

862 863 864 865 866

867 868

Cross Environment Testing

For some clients, we have the option to enable Cross Environment Testing. This means that the
client can create campaigns in their live environment and when a campaign is created a
duplicate campaign is created in their Sandbox environment. Furthermore, when placing
sandbox testing codes, the client can use their live Campaign ID in the sandbox codes/create
endpoint and the client will receive sandbox codes while using a live ID (for testing). The idea
behind this feature is to ease campaign creation and testing for clients between their live and
sandbox accounts. Do note that this functionality will ONLY work for newly created live
campaigns. To enable the feature, please contact your reward manager.

56

Conventions

● Client - Client application.

● Status - HTTP status code of response.

● All the possible responses are listed under ‘Responses’ for each method. Only one of

them is issued per request server.

● All responses are in JSON format.

● All request parameters are mandatory unless explicitly marked as [optional]

Status Codes

All status codes are standard HTTP status codes. The below ones are used in this API.

2XX - Success of some kind

3XX – Redirect of some kind

4XX - Error occurred in client’s part

5XX - Error occurred in server’s part

Status Code Description

200 OK

201 Created

202 Accepted (Request accepted, and queued for execution)

308 Permanently moved

400 Bad request

401 Authentication failure

403 Forbidden

404 Resource not found

405 Method Not Allowed

409 Conflict

413 Request Entity Too Large

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

